List Login
  • generalized pigeonhole principle

  • to be copied from original in CS2050 Scrapbox

  • principle

    • let nnn pigeons, kkk holes

    • there exists a hole with size ≥⌈nk⌉\ge\left\lceil\frac nk\right\rceil≥⌈kn​⌉

    • proof

      • Assume to the contrary that nnn pigeons go into holes S1,…,SkS_1,\ldots,S_kS1​,…,Sk​ but each hole has ≤⌈nk⌉\le\left\lceil\frac nk\right\rceil≤⌈kn​⌉ pigeons within

      • then, ∣Si∣<⌈nk⌉|S_i|<\left\lceil\frac nk\right\rceil∣Si​∣<⌈kn​⌉ so ∣Si∣≤⌈nk⌉−1|S_i|\le\left\lceil\frac nk\right\rceil-1∣Si​∣≤⌈kn​⌉−1

      • n=∣S1∪…∪Sn∣=∣S1∣+…+∣Sk∣≤(⌈nk⌉−1)+…+(⌈nk⌉−1)=k(⌈nk⌉−1)<k(nk)=n\begin{aligned} n &= |S_1\cup\ldots\cup S_n| \\ &= |S_1|+\ldots+|S_k| \\ &\le \left(\left\lceil\frac nk\right\rceil-1\right)+\ldots+\left(\left\lceil\frac nk\right\rceil-1\right) \\ &= k\left(\left\lceil\frac nk\right\rceil-1\right) \\ &< k\left(\frac nk\right)=n \end{aligned}n​=∣S1​∪…∪Sn​∣=∣S1​∣+…+∣Sk​∣≤(⌈kn​⌉−1)+…+(⌈kn​⌉−1)=k(⌈kn​⌉−1)<k(kn​)=n​
      • Which implies n<nn<nn<n, contradiction!

Page Links

1-Hop Links (0)

No 1-hop links

2-Hop Links (0)

No 2-hop links